WELCOME TO Description Description Learn and Educate

This is an Education Platform

We provide Free PDF Notes and Videos Classes for Pharmacy Students

Web Site http://www.fdspharmacy.in/

You tube https://www.youtube.com/channel/UC77iEsiuZolU4pB8WAJIR5Q

What app https://chat.whatsapp.com/IzSgXtFEvhS4LN5xhUgq5z

Telegram https://t.me/+cvxmi7xSloA4MjVl

Face book <u>https://www.facebook.com/Fdspharmacy-105764311994440/</u>

E-mail fdspharmacyinfo@gmail.com

Diploma in Pharmacy 1st Year Pharmaceutical Chemistry Experiment

To perform the assay of the given sample of ferrous sulphate by redox titration.

Aim:

To perform the assay of the given sample of ferrous sulphate by redox titration.

Reference:

⁶ Dr. Gupta G.D. , Dr. Sharma Shailish , Kaur Baljeet ² "Practical Manual of Pharmaceutical Chemistry" Published by Nirali Prakashan, Page no 33 - 36

Apparatus and Material Required :

Burette, burette stand, conical flask, volumetric pipette, beaker, volumetric flask, funnel, glass rod, and wash bottle, digital/analytical balance, ultrasonicator, ferrous sulphate (FeSO₄), sulphuric acid (H₂SO₄) and potassium permanganate (KMnO₄).

Theory:

- The assay of ferrous sulphate is based on redox titration (cerimetry). Ferrous sulphate is a potent oxidant that is employed as a reducing agent. The known concentration solution of ceric ammonium sulphate is titrated with ferrous sulphate using ferroin solution as an indicator.
- In the presence of dilute H₂SO₄, ferrous sulphate is oxidised to ferric sulphate. A drop of KMnO, is applied when the oxidation of ferrous sulphate is completed. The appearance of the permanent pink colour determines the titration's endpoint, and potassium permanganate (KMnO₄) serves as a self-indicator.

Chemical Equations

Reduction Half Reaction: 2 KMnO₄+ 3 H2SO₄ \rightarrow K₂SO₄+ 2 MnSO₄+ 3H₂O + 5 [O] Oxidation Half Reaction: 2 FeSO₄ (NH₄)₂SO₄. 6H₂O + H₂SO₄ + [O] \rightarrow Fe₂ (SO₄) ₃ + 2 (NH₄)₂SO₄ + 13 H₂O x 5

= 2 KMnO₄ + 8 H2SO₄+ 10 FeSO₄ (NH₄)₂SO₄. 6H₂O \rightarrow K₂SO₄ + 2 MnSO₄ + 5Fe₂ (SO₄) ₃ + 10 (NH₄)₂SO₄ + 68 H₂O

Ionic Equation Reduction Half Reaction: $MnO_4^- + 5e^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$ Oxidation Half Reaction: $Fe^{2+} \rightarrow Fe^{3+} + e^- \times 5$ $= MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$

Procedure:

Preparation of 0.05 M, Standard Solution of Ferrous Ammonium

Sulphate (Molar mass of FeSO4 (NH4): SO4. 6H2O = 392 g mol-l).

- 49000 g of ferrous ammonium sulphate should be weighed and transferred into 250 ml measuring flask through a funnel.
- 2) The solid sticking to the funnel should be transferred to the funnel with the help of distilled water into the flask add dilute H,SO, drop by drop to obtain a clear solution.
- 3) The flask should be shaken till the substance dissolves and make the solution up to the mark

Titration of Ferrous Ammonium Sulphate

- The burette should be washed and filled with potassium permanganate solution. Air bubbles should be removed from the burette tip by releasing some solution via it.
- 2) 10 mL of 0.05 M ferrous ammonium sulphate solution should be taken in a conical flask and half test tube (= 5 mL) full of (1.0M) H2SO4 should be added to it.

- 3) The above solution should be titrated with potassium permanganate solution until the permanent pink colour appears. The content of the flask should be agitated during the titration.
- 4) The titration should be repeated until three concordant readings are obtained.
- 5) The readings should be recorded as shown in observation Table 2 and the strength of potassium permanganate solution should be calculated in mols/litre

Observation Table

S .	Volume of Ferrous		us Burette R	eading	Volume of KMnO4
No.	Ammonium				Rundown
			Initial	Final	
1	20ml		0	10	10
2	20ml		10	15	15
3	20		15	18	18
Calculation					
Percentage purity can be determined by the following formula.					
Titre value x Equivalent wt factor > Normality of titrant (actual)					
Percentage = × 100					
Weigh of sample x Normality of titrant (expected)					
or					
Calculated mass of given sample					
Percentage (%) Purity = × 100					
Given mass of sample					
or					
Mass _{calculated}					
% purity = × 100					
Mass _{Given}					
	1	.0+15+18			
Averag		= 14.	.3		
-		3			
	_{0.05} × 10)			
M ₁ =	0.05 ~ 1)			
		14.3			
14.3					
					FDSPharmacy

Standardisation of 0.05M Ferrous Ammonium Sulphate $M_1 V_1 = M_2 V_2$ $M_2 = M_1 V_1 / V_2$ Where, M₁ = Molarity of Ferrous Ammonium Sulphate V1 = Volume of Ferrous Ammonium Sulphate M₂= Molarity of KMnO, Solution V2 = VVolume of KMnO4 Solution $M_1 = 0.05$ V1= 10 $M_1 = ?$ V2= 14.3 0.02063x V2 x M2 Purity of solution = X 100 M₁ x w 0.02063 Equivalent factor 0.05 = M1 $14.3 = V_2$ 0.49 = W $(0.02063 \times 14.3 \times 0.034)$ = (0.05 * 0.49)

% Purity = 1.003/0.02 = 33.4%

Result: The percentage purity of the given sample of FeSO₄ is 33.4%.

Hello

Friends

If you Get Any Help From This Notes /

Videos

Next You Turn To Help Us

Please Contribute Some Amount

To Our

FDSPharmacy Team

Phone pe 6398439940

Paytm 6398439940

Google Pay 6398439940

Amir Khan

